												REVIS	SIONS								
					LTR DESCRIPTI			TON				DATE			APPROVED)				
Prepared	in acc	cordar	nce witl	n ASME `	Y14.24												Ve	endor i	item dı	rawing	l
REV																					
PAGE																					
REV																					
PAGE																					
REV STA			REV																		
OF PAGE	ES		PAG	E	1	2	3	4	5	6	7	8	9	10	11						
PMIC N/A	4			PREPA	RED BY		NI						_					ITIME			
					ŀ	'nu H.	Nguy	en	COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil/												
Original date of drawing CHECKED B									TITLE												
YY MM DD					Nguy	en					IRC	JIT,	LINE	AR,	15 N	ИHz,	RAIL	. TO			
12-10-12 APPR			APPRO	VED BY		s М. Не	ess			RA	IL, D	UAL	OPE	RATI	ONA			FIER,			
											1	NOL) SIL	ICON	1					
				SIZE	COL	E IDE	NT. N				DW	G NO.		1	IG ?	14 ~)62	0			
				Α			16	236			V62/12639										
				REV							PAG	SE 1	OF	11							

AMSC N/A 5962-V010-13

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance 15 MHz, rail to rail, dual operational amplifier microcircuit, with an operating temperature range of -55°C to +125°C.
- 1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

 V62/12639
 01
 X
 E

 Drawing number
 Device type (See 1.2.1)
 Case outline (See 1.2.2)
 Lead finish (See 1.2.3)

1.2.1 Device type(s).

Device type Generic Circuit function

O1 OP262-EP 15 MHz. rail to rail, dual operational amplifier

1.2.2 <u>Case outline(s)</u>. The case outlines are as specified herein.

 Outline letter
 Number of pins
 JEDEC PUB 95
 Package style

 X
 8
 JEDEC MS-012-AA
 Standard Small Outline Package

1.2.3 <u>Lead finishes</u>. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator

A Hot solder dip
B Tin-lead plate
C Gold plate
D Palladium
E Gold flash palladium
Z Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12639
		REV	PAGE 2

1.3 Absolute maximum ratings. 1/

Supply voltage	±6 V
Input voltage	±6 V <u>2</u> /
Differential input voltage	±0.6 V 3/
Internal power dissipation SOIC (S)	
Output short circuit duration	
Operating temperature range:	
Storage temperature range	
Junction temperature range	
Lead temperature range (Soldering, 10 sec)	

1.4 Thermal characteristics.

Thermal resistance

Case outline	θ _{JA} <u>4</u> /	θις	Unit
Case X	157	56	°C/W

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEP95 - Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at http://www.jedec.org or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240–S, Arlington, VA 22201.)

3. REQUIREMENTS

- 3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
 - A. Manufacturer's name, CAGE code, or logo
 - B. Pin 1 identifier
 - C. ESDS identification (optional)
- 3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12639
		REV	PAGE 3

^{1/} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

^{2/} For supply voltage greater than 6 V, the input voltage is limited to less than or equal to the supply voltage.

^{3/} For differential input voltages greater than 0.6 V, the input current should be limited to less than 5 mA to prevent degradation or destruction of the input device.

 $[\]underline{4}$ / θ_{JA} is specified for the worst case conditions, that is, θ_{JA} is specified for a device soldered in circuit board for SOIC package.

- 3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3 and table I herein.
 - 3.4 <u>Design, construction, and physical dimension</u>. The design, construction, and physical dimensions are as specified herein.
 - 3.5 Diagrams.
 - 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
 - 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12639
		REV	PAGE 4

TABLE I. <u>Electrical performance characteristics</u>. <u>1</u>/

Test	Symbol	Test conditions		Limits		Unit
		$V_S = 5.0 \text{ V}, V_{CM} = 0 \text{ V}$ $T_A = 25^{\circ}\text{C}$ unless otherwise specified	Min	Тур	Max	
Input characteristics		different wide openined			I.	
Offset voltage	Vos			45	325	μV
- Chook vollage	*03	-55°C ≤ T _A ≤ +125°C			1	mV
Input bias current	Is			360	600	nA
pat olao oanoni	.0	-55°C ≤ T _A ≤ +125°C			650	
Input offset current	Ios			±2.5	±25	
pat ooct cac	.03	-55°C ≤ T _A ≤ +125°C			±40	
Input voltage range	V _{CM}		0		4	V
Common mode rejection	CMRR	$0 \text{ V} \le \text{V}_{\text{CM}} \le 4.0 \text{ V}, -55^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	70	110		dB
		$R_L = 2 k\Omega, 0.5 V \le V_{OUT} \le 4.5 V$		30		V/mV
Large signal voltage gain	Avo	$R_L = 10 \text{ k}\Omega, 0.5 \text{ V} \le V_{OUT} \le 4.5 \text{ V}$	65	88		
		$R_L = 10 \text{ k}\Omega, -55^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$	40			
Offset voltage drift 2/	ΔV _{OS} /ΔΤ			1		μV/°C
Bias current drift	ΔΙ _Β /ΔΤ			250		pA/°C
Output characteristics						
Output voltage swing high	V _{OH}	$I_L = 250 \mu\text{A}, -55^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$	4.95	4.99		V
Catput voltage owing mgm	V O⊓	$I_L = 5 \text{ mA}$	4.85	4.94		
Output voltage swing low	V _{OL}	$I_L = 250 \mu\text{A}, -55^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$		14	50	mV
Catput voltage owing low	V OL	$I_L = 5 \text{ mA}$		65	150	
Short circuit current	I _{SC}	Short to ground		±80		mA
Maximum output current	I _{OUT}			±30		
Power supply						_
Power supply rejection ratio	PSRR	$V_{S} = 2.7 \text{ V to 7 V}$		120		dB
Tower supply rejection ratio	1 01414	-55°C ≤ T _A ≤ +125°C	90			
Supply current/Amplifier	I _{SY}	V _{OUT} = 2.5 V		500	700	μΑ
Cappiy carroing, unpunior	131	-55°C ≤ T _A ≤ +125°C			850	
Dynamic performance						_
Slew rate	SR	$1 \text{ V} \leq \text{V}_{\text{OUT}} \leq 4 \text{ V}, \text{ R}_{\text{L}} = 10 \text{ k}\Omega$		10		V/µs
Settling time	ts	To 0.1%, $A_V = -1$, $V_O = 2 \text{ V step}$		540		ns
Gain bandwidth product	GBP			15		MHz
Phase margin	φm			61		Degrees
Noise performance		1	· ·	1		
Voltage noise	e _n p-p	0.1 Hz to 10 Hz		0.5		μV p-p
Voltage noise density	en	f = 1 kHz		9.5		nV/√Hz
Current noise density	in	f = 1 kHz		0.4		pA/√Hz

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12639
		REV	PAGE 5

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/

Test	Symbol	Test conditions		Limits		Unit
		$V_S = 3.0 \text{ V}, V_{CM} = 0 \text{ V}$ $T_A = 25^{\circ}\text{C}$ unless otherwise specified	Min	Тур	Max	
Input characteristics	•			•		•
Offset voltage	Vos			50	325	μV
Check voltage	*05	-55°C ≤ T _A ≤ +125°C			1	mV
Input bias current	Is			360	600	nA
Input offset current	I _{OS}			±2.5	±25	
Input voltage range	V _{CM}		0		2	V
Common mode rejection	CMRR	$0 \text{ V} \le \text{V}_{CM} \le 4.0 \text{ V}, -55^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	70	110		dB
Large signal voltage gain	A _{VO}	$R_L = 2 \text{ k}\Omega, 0.5 \text{ V} \le V_{OUT} \le 2.5 \text{ V}$		20		V/mV
ge e.ga. renage ga	7.00	$R_L = 10 \text{ k}\Omega, 0.5 \text{ V} \le V_{OUT} \le 2.5 \text{ V}$	20	30		
Output characteristics						
Output voltage swing high	V _{OH}	I _L = 250 μA	2.95	2.99		V
	- 011	$I_L = 5 \text{ mA}$	2.85	2.93		
Output voltage swing low	V _{OL}	I _L = 250 μA		14	50	mV
	.02	$I_L = 5 \text{ mA}$		66	150	
Power supply						
Power supply rejection ratio	PSRR	V _S = 2.7 V to 7 V		110		dB
		-55°C ≤ T _A ≤ +125°C	60			
Supply current/Amplifier	I _{SY}	V _{OUT} = 1.5 V		500	650	μA
Cappiy carreing, anipinior	131	-55°C ≤ T _A ≤ +125°C			850	
Dynamic performance						
Slew rate	SR	$R_L = 10 \text{ k}\Omega$		10		V/µs
Settling time	t _S	To 0.1%, $A_V = -1$, $V_O = 2$ V step		575		ns
Gain bandwidth product	GBP			15		MHz
Phase margin	Ψm			59		Degree
Noise performance						
Voltage noise	e _n p-p	0.1 Hz to 10 Hz		0.5		μV p-p
Voltage noise density	en	f = 1 kHz		9.5		nV/√Hz
Current noise density	i _n	f = 1 kHz		0.4		pA/√Hz

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12639
		REV	PAGE 6

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/

Test	Symbol	Test conditions		Limits		Unit
		$V_S = \pm 5.0 \text{ V}, V_{CM} = 0 \text{ V}$ $T_A = 25^{\circ}\text{C}$	Min	Тур	Max	
		unless otherwise specified				
Input characteristics		unicas otherwise specifica				
Offset voltage	Vos			25	325	μV
Oliset voltage	VOS	-55°C ≤ T _A ≤ +125°C			1	mV
Input bias current	Is			260	500	nA
input bias current	IS	-55°C ≤ T _A ≤ +125°C			650	
Input offset ourrent	,	, ,		±2.5	±25	
Input offset current	los	-55°C ≤ T _A ≤ +125°C			±40	
Input voltage range	V _{CM}		-5		+4	V
Common mode rejection	CMRR	-4.9 V ≤ V _{CM} ≤ +4.0 V, -55°C ≤ T _A ≤ +125°C	70	110		dB
•		$R_L = 2 \text{ k}\Omega$, -4.5 V \leq V _{OUT} \leq +4.5 V		35		V/mV
Large signal voltage gain	A _{VO}	$R_L = 10 \text{ k}\Omega, -4.5 \text{ V} \le V_{OUT} \le 4.5 \text{ V}$	75	120		
3 3 3 3		-55°C ≤ T _A ≤ +125°C	25			
Long term offset voltage 3/	Vos	33 5 - 1 _M - 1. <u>2</u> 5 5			600	μV
Offset voltage drift 2/	ΔV _{OS} /ΔΤ			1		μV/°C
Bias current drift	ΔΙ _Β /ΔΤ			250		pA/°C
Output characteristics					ı	p, , 0
Output voltage swing high	V _{OH}	$I_L = 250 \mu\text{A}, -55^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$	4.95	4.99		V
Catput Voltage Swilig High	V OH	$I_L = 5 \text{ mA}$	4.85	4.94		
Output voltage swing low	V _{OL}	$I_L = 250 \mu\text{A}, -55^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$		-4.99	-4.95	
Output voltage swilig low	VOL	I _L = 5 mA		-4.94	-4.85	
Short circuit current	I _{SC}	Short to ground		±80		mA
Maximum output current	I _{OUT}			±30		
Power supply						
Power supply rejection ratio	PSRR	$V_S = \pm 1.35 \text{ V to } \pm 6 \text{ V}$		110		dB
Tower supply rejection ratio	TOTAL	-55°C ≤ T _A ≤ +125°C	60			
		$V_{OUT} = 0 V$		650	800	μΑ
0 1 1/0 1/5		-55°C ≤ T _A ≤ +125°C			1.15	mA
Supply current/Amplifier	I _{SY}	$V_{OUT} = 0 V$		550	775	μΑ
		-55°C ≤ T _A ≤ +125°C			1	mA
Supply voltage range	Vs		3.0 (±1.5)		12 (±6)	
Dynamic performance						
Slew rate	SR	$-4 \text{ V} \leq \text{V}_{\text{OUT}} \leq +4 \text{ V}, \text{ R}_{\text{L}} = 10 \text{ k}\Omega$		13		V/µs
Settling time	ts	To 0.1%, $A_V = -1$, $V_O = 2 \text{ V step}$		475		ns
Gain bandwidth product	GBP			15		MHz
Phase margin	Ψm			64		Degree

See footnote at end of table.

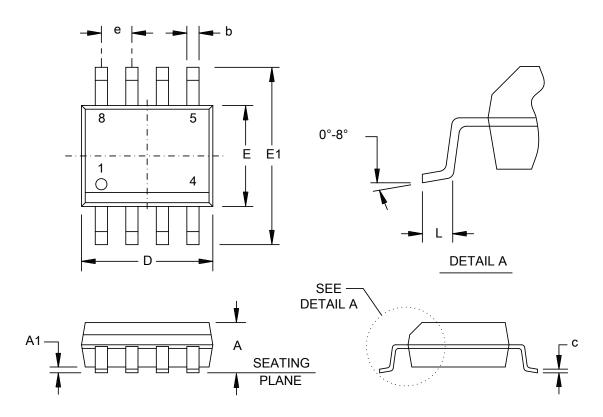

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12639
		REV	PAGE 7

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/

Test	Symbol	Test conditions		Limits		Unit
		$V_S = \pm 5.0 \text{ V}, V_{CM} = 0 \text{ V}$	Min	Тур	Max	
		$T_A = 25^{\circ}C$				
		unless otherwise specified				
Noise performance						
Voltage noise	e _n p-p	0.1 Hz to 10 Hz		0.5		μV p-p
Voltage noise density	en	f = 1 kHz		9.5		nV/√Hz
Current noise density	i _n	f = 1 kHz		0.4		pA/√Hz

- 1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
- 2/ Offset voltage drift is the average of the -55°C to +25°C delta and the +25°C to +125°C delta.
- 3/ Long term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at 125°C, with a LTPD of 1.3.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/12639	
		REV	PAGE 8	

	Dimensions								
Symbol	Millime	eters	Inc	hes	Symbol	Millimeters		Inches	
	Min	Max	Min	Max		Min	Max	Min	Max
Α	1.35	1.75	.053	.068	Е	3.80	4.00	.149	.157
A1	0.10	0.25	.004	.009	E1	5.80	6.20	.228	.244
b	0.31	0.51	.012	.020	е	1.27	BSC	.050	0 BSC
С	0.17	0.25	.006	.009	L	0.40	1.27	.015	.050
D	4 80	5.00	189	.197				•	•

NOTES:

- 1. Controlling dimensions are in millimeters; inch dimensions are rounded-off millimeter equivalents for reference only and are not appropriate for use in design.
- 2. Falls within JEDEC MS-012-AA.

FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/12639	
		REV	PAGE 9	

Case outline X							
Terminal number	Terminal symbol	Terminal number	Terminal symbol				
1	OUT A	8	V +				
2	-IN A	7	OUT B				
3	+IN A	6	-IN B				
4	V-	5	+IN B				

FIGURE 2. <u>Terminal connections</u>.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/12639	
		REV	PAGE 10	

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

- 5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.
 - 6. NOTES
 - 6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
- 6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
- 6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Vendor part number
V62/12639-01XE	24355	OP262TRZ-EP-R7
102/12000 01/12	2.000	OP262TRZ-EP

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

<u>CAGE code</u> <u>Source of supply</u>

24355 Analog Devices 1 Technology Way P.O. Box 9106

Norwood, MA 02062-9106

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12639
		REV	PAGE 11